Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(16): 3694-3701.e4, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34293332

RESUMO

Adaptation to novel environments often involves the evolution of multiple morphological, physiological, and behavioral traits. One striking example of multi-trait evolution is the suite of traits that has evolved repeatedly in cave animals, including regression of eyes, loss of pigmentation, and enhancement of non-visual sensory systems.1,2 The Mexican tetra, Astyanax mexicanus, consists of fish that inhabit at least 30 caves in Mexico and ancestral-like surface fish that inhabit the rivers of Mexico and southern Texas.3 Cave A. mexicanus are interfertile with surface fish and have evolved a number of traits, including reduced pigmentation, eye loss, and alterations to behavior.4-6 To define relationships between different cave-evolved traits, we phenotyped 208 surface-cave F2 hybrid fish for numerous morphological and behavioral traits. We found differences in sleep between pigmented and albino hybrid fish, raising the possibility that these traits share a genetic basis. In cavefish and other species, mutations in oculocutaneous albinism 2 (oca2) cause albinism.7-12 Surface fish with mutations in oca2 displayed both albinism and reduced sleep. Further, this mutation in oca2 fails to complement sleep loss when surface fish harboring this engineered mutation are crossed to independently evolved populations of albino cavefish with naturally occurring mutations in oca2. Analysis of the oca2 locus in wild-caught cave and surface fish suggests that oca2 is under positive selection in 3 cave populations. Taken together, these findings identify oca2 as a novel regulator of sleep and suggest that a pleiotropic function of oca2 underlies the adaptive evolution of albinism and sleep loss.


Assuntos
Albinismo , Characidae , Proteínas de Peixes/genética , Sono , Animais , Evolução Biológica , Characidae/genética , Olho , Pigmentação/genética
2.
RNA ; 27(2): 221-233, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33219089

RESUMO

During their maturation, nascent 40S subunits enter a translation-like quality control cycle, where they are joined by mature 60S subunits to form 80S-like ribosomes. While these assembly intermediates are essential for maturation and quality control, how they form, and how their structure promotes quality control, remains unknown. To address these questions, we determined the structure of an 80S-like ribosome assembly intermediate to an overall resolution of 3.4 Å. The structure, validated by biochemical data, resolves a large body of previously paradoxical data and illustrates how assembly and translation factors cooperate to promote the formation of an interface that lacks many mature subunit contacts but is stabilized by the universally conserved methyltransferase Dim1. We also show how Tsr1 enables this interface by blocking the canonical binding of eIF5B to 40S subunits, while maintaining its binding to 60S. The structure also shows how this interface leads to unfolding of the platform, which allows for temporal regulation of the ATPase Fap7, thus linking 40S maturation to quality control during ribosome assembly.


Assuntos
Adenilato Quinase/genética , Regulação Fúngica da Expressão Gênica , Metiltransferases/genética , Proteínas Nucleares/genética , Nucleosídeo-Trifosfatase/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenilato Quinase/química , Adenilato Quinase/metabolismo , Sítios de Ligação , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Biogênese de Organelas , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA